Profiles in Virtual Care Delivery

A collection of vignettes and lessons learned from organizations transforming healthcare practice through clinical innovation

Compiled/edited by Digital Health Canada and Ontario Telemedicine Network
Acknowledgments

The publishers gratefully acknowledge these volunteers:

- Michelle Aspden, Provincial Lead, Oncology, Palliative & Renal Programs, Ontario Telemedicine Network
- Bobby Gheorghiu, Benefits Realization Leader, Adoption & Evaluation, Canada Health Infoway
- Sanjeev Goel, Lead Physician & Founder, Health Quality Innovation Collaborative
- Andre Kushniruk, Director & Professor, School of Health Information Science, University of Victoria
- Darren Larsen, Chief Medical Information Officer, OntarioMD
- Margarita Loyola, Manager, Centre for Telehealth, Island Health
- Philippe Lubino, Hospital Director, Chisasibi Regional Hospital
- Angela Nickoloff, Clinical Innovation Lead, Ontario Telemedicine Network
- Gwendolyne Nyhof, Manager, Telehealth Programs, MBTelehealth
- Peter Rossos, Chief Medical Information Officer & Staff Gastroenterologist, University Health Network
- Mike Spelliscy, Vice-President, Business Engineering, CGI
- Eyrin Tedesco, Director, Clinical eHealth Initiatives, First Nations Health Authority
- Carol McFarlane, Senior Strategy Lead, Ontario Telemedicine Network (Core Working Group Co-Chair)
- Grant Gillis, Core Working Group Co-Chair
- Carina Andreatta, Secretariat

Finally, both organizations thank their staff for their stewardship of the report from concept to publication: Carol McFarlane, Grant Gillis, Carina Andreatta, Ellen Kaross, Payam Pakravan, and Brent Farrell.
Introduction

Digital Health Canada and the Ontario Telemedicine Network (OTN) are pleased to have partnered in the publication of this paper, which presents a collection of vignettes and instructive real-world examples of virtual care implementation in a variety of practice settings.

Research and writing took place over the spring, summer, and autumn of 2016, and was made possible by the tremendous expertise and dedication of the members of a core working group. Digital Health Canada and OTN gratefully acknowledge volunteer writers, editors, and subject matter experts who developed and edited the content, as well as the 2016 e-Health Conference Sunday Symposium workshop attendees for their invaluable input and feedback on the draft components of this report.

The working group felt it was important to separate the subject matter into three sections and six domain areas, with an illustrative implementation story in each area. It is intended for multiple audiences, including front-line healthcare providers and their patients, IM/IT professionals, technology vendors, administrators, executives, and academics. The examples chosen by the working group seek to outline the approaches, actions, roles, skills, and knowledge used by the contributors to implement virtual care, defined as “eliminating distance in the practice of healthcare and wellness utilizing information communication technologies.”

Table of Contents

Section 1 - System Perspectives
 1.1 Strategic Planning 4
 Case Study: Health Sciences North 5
 1.2 Performance Evaluation and Measurement .. 6
 Case Study: Oak Tree Clinic 7

Section 2 - Change Management
 2.1 Readiness Assessment 8
 Case Study: Scottish Centre for Telehealth and Telecare 9
 2.2 Workflow Redesign and Innovation .. 10
 Case Study: South East Toronto Family Health Team 11

Section 3 - Key Enablers
 3.1 Technology Implications 12
 Case Study: Nain, Labrador 13
 3.2 Human Resource and Training Requirements 14
 Case Study: Cree Board of Health and Social Services of James Bay 15

Summary 16
Sources 18

1 2015 Canadian Telehealth Report COACH: Canada's Health Informatics Association

All rights reserved. No part of this publication may be reproduced or transmitted in any form, or by any means, electronic or mechanical, including photocopying, recording or any information storage or retrieval system, without express permission in writing from COACH. © 2017 Digital Health Canada (formerly COACH: Canada's Health Informatics Association). ISBN 978-1-7751818-0-4
“Build it and they will come” may be wishful thinking when it comes to effectively integrating technology solutions into healthcare delivery. While ‘technology for technology’s sake’ often fails in gaining widespread adoption, well-integrated technology supporting the provider-patient relationship can be a key enabler of positive, productive results.

Healthcare innovations have a greater chance of success when: a patient need is present; continuity of care is upheld; providers can easily incorporate the technology into their clinical workflows; and benefits are experienced from the system, provider, and patient perspectives. This requires careful consideration and a collaborative approach to planning.

Implementing healthcare technology requires broad program planning that meets regional and organizational priorities when it comes to serving the patient. A move away from the siloed approach is beginning to take hold at a number of healthcare organizations where senior leaders are fully embracing the inclusion of information communications technologies.

All leaders can and should engage providers and patients to determine how to support and facilitate virtual care-based strategies. While experts and agencies can assist with design, change management, infrastructure, and solution delivery, the most critical success factors are the generation of value and the sustained ‘buy-in’ of providers and patients.

Patient participation throughout the process begins and ends with what healthcare organizations are striving to achieve: patient-based outcomes that are directly linked to goals and performance metrics. Experienced virtual healthcare professionals - such as provincial telemedicine providers - can bring subject matter expertise to the table, along with vital facilitation capabilities and change management skills. Having a well-planned change management strategy in place will ensure both positive and negative results are monitored and addressed as organizations proceed with any new healthcare technology implementation.
Case Study:
Health Sciences North establishes a planning partnership as a foundation for effective virtual care implementation

Health Sciences North (HSN) is a 450-bed academic health sciences centre located in Sudbury, Ontario. With a diverse range of programs, HSN serves as the region’s cancer centre and has for some years been recognized as a virtual oncology delivery leader. The organization recently saw an opportunity to integrate new technology and ‘virtualize’ more care. To do so, it began with a strategic planning process.

In June 2014, HSN and the Ontario Telemedicine Network (OTN) engaged in a planning partnership. OTN led the virtual care strategic planning component, on-the-ground analytical and account management expertise, while HSN designated senior resources to coordinate the participation of clinical teams.

HSN felt it was important to dedicate time and resources to this important initiative as a means of:
1. Optimizing the delivery of care at the organization and in the region
2. Ensuring regional program targets were met
3. Supporting HSN’s strategic goals relating to access, care transitions and financial health

It was critical for both organizations that the outcome not be a siloed virtual care plan, but that the resulting objectives and activities be fully embedded into the HSN organizational strategic plan.

Through a virtual care workshop facilitated by OTN, structured brainstorming with HSN’s clinical leaders enabled the sharing of information by both parties, with a focus on their key priorities and challenges. Participants then shared ideas on opportunities to address these key elements by detailing the pressing issues, focusing on patient populations as well as metrics to track progress and outcomes.

Eight different clinical areas and/or patient populations were identified. These ranged from primary to specialty care capacity building, as well as improving mental health delivery in crisis situations. Since not all eight initiatives could be immediately rolled out, a carefully structured prioritization exercise assessed aspects of clinical area readiness to organizational impact (e.g. helping to achieve a regional objective such as decreasing unrequired emergency admissions). The prioritization resulted in the decision to immediately roll out a comprehensive virtual chronic disease management program, focusing on nephrology, foot health, and bariatric patients. These programs have met their one-year milestone and an evaluation is underway to confirm Return on Investment and impact.

To guarantee effective implementation over the longer term, to meet both time requirements and anticipated impacts, a joint HSN-OTN senior governance structure was established to:
• Ensure the ongoing alignment of the HSN strategic goals and objectives to current as well as future virtual solutions
• Establish accountability for projects, including deliverables and detailed measures of success
• Provide a forum to resolve issues or mitigate risks as they arise
Domain: Performance Evaluation and Measurement

As with any form of healthcare technology, systematic evaluation is needed to ensure that investments made in virtual care are consistently delivering the expected benefits in terms of improved quality, access, and productivity, as well as patient and provider satisfaction.

Previous studies of virtual care investments in Canada have already demonstrated significant benefits. For example, OTN's Telehomecare program for Ontarians with chronic diseases has shown reductions of 50-60% in hospital re-admissions and emergency department visits, while greatly relieving caregiver burden and earning high marks for patient satisfaction. McKinsey has estimated that the broad implementation of virtual care solutions could deliver total gross annual benefits of between $2.6 and $3.4 billion.

A Conference Board of Canada study estimated that approximately 18.8 million hours of work would be saved and $400 million would be added to the GDP annually, just by allowing Canadians to view their laboratory results or to request prescription renewals online instead of taking time off work to visit their providers.

To maximize the potential benefits of virtual care, however, Canada must greatly increase both the scope of virtual services offered and the proportion of patients able to access these services. Alongside the change requirements related to new payment models (e.g., renumeration, billing) changes to consider in order to meet the demand for virtual care in Canada include the further evaluation of virtual care programs and technological solutions, in particular the detailed tracking of use and user satisfaction. In addition, comprehensive evaluations of the quality, access and productivity dimensions of intended benefits are required in order to solidify the business cases needed to justify this expansion. The Canada Health Infoway Benefits Evaluation Framework is a useful tool in the evaluation of digital health technologies.

Case Study:
Vancouver’s Oak Tree Clinic finds value in consumer engagement for promoting supported self-care

Vancouver’s Oak Tree Clinic provides inter-professional HIV care. An evaluation⁸ was conducted to examine the feasibility and acceptability of a mobile phone-based text messaging service to provide enhanced support to HIV-positive individuals attending the clinic. A key factor differentiating this intervention from other virtual care interventions is the promotion of self-care through bi-directional messaging using mobile technology readily available to consumers.

The simplicity of this intervention is one of its greatest strengths — a weekly check-in text message is sent to participating patients who are expected to text back their health status within 48 hours. A problem response is triaged to the appropriate health care provider for follow up, and a non-response receives a follow-up text. Simple language is used to minimize challenges for participants who speak English as a second language.

Asking patients ‘how are you?’ gives them the opportunity to communicate their health status with providers directly and on a regular basis. This encourages continuous and active patient engagement in the healthcare system, while also providing patients with a simple way to engage with their providers about their care in a proactive manner.

The text-messaging intervention was valued by both providers and patients as a consistent, easy-to-use method for facilitating and maintaining communication. According to one patient, the Short Message Service (SMS)-based program “… was good encouragement and it helped me to have a positive outlook on my treatment, knowing that I had support from a health care team … it was just positive in assisting through my treatment.”

An eye-opening finding of the evaluation, and one that speaks to the value of evaluating multiple aspects of care (e.g. quality, access, and productivity), is that on average, a nurse can manage 85 highly vulnerable HIV-positive patients at the same time by spending two hours per week responding to client messages. The Oak Tree Clinic is one example of how an innovative virtual care solution does not have to be resource-intensive to provide benefits for patients.

Virtual care provides an opportunity for providers and organizations to reach beyond their current service offerings and be creative in how they deliver care. However, integrating virtual care can be a significant undertaking, requiring a comprehensive change management strategy as well as careful planning to develop successful and sustainable implementation processes.

It is not unusual to hear about virtual health services that do not progress beyond the pilot phase or eventually become idle. A common culprit in these situations is often the absence of readiness assessments, which help to determine the degree to which healthcare delivery organizations (e.g., hospitals, health authorities, primary care networks, community care clinics, community pharmacies, and even patients in their homes) are prepared to embrace change and participate in virtual care implementation. It is not enough to be physically and technically ready for virtual care; the organization and its culture must be ready to accept and support the change – or it will fail. Change management is therefore critical to success.

Approaches to determining readiness can vary: they can be as formal as conducting facilitated interviews of key stakeholders with findings presented to senior leadership or as simple as having stakeholders complete a readiness checklist to ensure that critical areas have been considered.

The scope of readiness assessment can also vary along a continuum from a single organization to the national level. No matter how extensive the scope, assessing readiness before implementing virtual care is deemed critical to success. To achieve and maintain an effective state of readiness, however, neither needs to be a time-consuming nor daunting task, and can be facilitated by framing a process used to determine readiness. The Canada Health Infoway Benefits Evaluation Framework[7] is a useful tool in the evaluation of digital health technologies.
Case Study: The Scottish Centre for Telehealth and Telecare self-assessment toolkit helps organizations determine readiness for new technology deployment

The Scottish Centre for Telehealth and Telecare was recently involved in a project called “Momentum” that unfolded between February 2012 and January 2015. This project, involving a number of stakeholders, aimed to achieve widespread deployment of virtual care services by 2020. Through the sharing and pooling of stakeholder knowledge and experience in deploying telemedicine, a comprehensive blueprint was developed with supporting documents that offers guidance for growing telemedicine from an idea or pilot to accepted daily practice.

In addition to offering critical success factors, the Momentum blueprint includes a self-assessment toolkit that helps organizations determine their readiness for deployment by way of a comprehensive questionnaire and a consultative workshop involving all the relevant stakeholders. This approach works toward ensuring that the people in the organization share a common vision and are committed to its success.

In April 2015, the Scottish government used the Momentum readiness checklist to assess the critical success factors for the adoption of the country’s “Technology-Enabled Care Program” for various virtual care services including telehealth, home monitoring, videoconferencing, digital platforms, and mobile health and well-being. The self-readiness toolkit was initially used by local delivery partners as well as at the program level to determine the state of readiness at a national level for technology-enabled care. This Scottish experience highlights many of the recommended components for assessing readiness for virtual care: a multi-step process with varying approaches, understanding the complementarity of critical success factors, and the need for careful planning.

This approach works toward ensuring that the people in the organization share a common vision and are committed to its success.

Virtual care tools can be successfully integrated into an existing daily clinical workflow with strong clinical leadership, influential in-house champions, and appropriate scaling achieved by observation, example and local trials.

Consider clinical culture: creating environments for providers to adopt new virtual technology-based care technology may require a wholesale culture shift. When commitment to change is coupled with collaboration involving providers, the benefits of virtual care will be realized.

There are oft-cited international examples of successful virtual care adoption, typically at high-performing American health systems such as Kaiser Permanente, Mayo and Cleveland clinics. The benefits of virtual care in these organizations are tightly linked to patient movement and engagement across the entire health system and the workflow is prescribed.

Similarly, in unified health systems such as Denmark and The Netherlands, with their small and locally contained populations, system changes can also be realized more easily. Canada continues to face challenges presented by geographical size, separate jurisdictional, regional and local healthcare delivery systems, multiple payment models, and varied electronic medical record systems.
Case Study: Changing workflows and culture at the South East Toronto Family Health Team

Dr. Tia Pham at the South East Toronto Family Health Team is a perfect example of changing workflows and changing culture. She recently decided to devote two hours of her day to virtual care, every day. In making this decision and providing examples of ways to make this happen, she has managed to change a local culture and make virtual care an integrated part of a package of visit types available to patients. They have choice based on appropriateness and need. They have predictability as to timing. They have more convenience. They have improved access.

In every environment where virtual care options have been used broadly, the work itself has been aligned to some vision. Sometimes this is based in efficiency; often there is a quality improvement focus on effectiveness. Always there is a desire to improve both patient centred care (giving them a range of options) and ultimately access to the most appropriate care for specific patients. Inevitably this involves expanding the range of choices available to patients. It's not about being more available or doing more work: it's about being flexibly accessible and making virtual visits part of everyday practice.

Dr. Pham followed a few basic tenets to ensuring virtual care is implemented strategically, and in a way that entrenches permanent culture change in practice:
1. Consider virtual visits as equal alternatives to in-office visits (not second rate options).
2. Offer virtual care where this is appropriate.
3. Plan for virtual care by analyzing supply and demand in a day.
4. Educate patients about the availability and appropriateness of virtual care and their options.
5. Utilize staff to assist in the uptake by ensuring that virtual care options are explained and seen as a choice to be made by the patient.
6. Promote the utility of virtual care yet be realistic about its limitations.
7. Allow all manner of virtual visit types: from secure SMS and email, to appropriate phone calls, to video conferencing visits.

In creating a workflow for virtual care in a clinical environment, it is advisable to first determine what problem you are trying to address, and ensure that the proposed solution will solve the stated problem for the majority of patients, as opposed to creating new barriers. Measure impact with some analysis before and after the change to help instill workflow changes permanently, and with confidence.
Virtual care is a growing area of healthcare and requires specific technology; however, it has to be exactly the right technology, used under the right conditions and integrated with new/altered models of care. Equilibrium needs to be established—and, given the pace of technology evolution, constantly maintained—as to when, where and how technology enabling virtual care is used. What is needed is a cohesive, orchestrated strategy, a “balancing act” to put (and keep) all the pieces together correctly to make treatment as effective and efficient as possible, while informing and fostering acceptance from patients, providers, and payers.

The technology must be simple and easy to use, with multiple options for interaction such as voice, touch, and visualization. Both the provider as well as the patient must be comfortable and confident when using the technology; the need for comfort and confidence can extend to family and friends who may also have to interact with the technology. Capability must also be considered for those patients residing in remote areas: they may encounter obstacles in using virtual technologies given network connectivity and other geographic-specific barriers and constraints that must be recognized, understood and accommodated.

In addition to the patient-provider, virtual care can have financial system-wide implications. For example, the B.C. government implemented physician fee-for-service billing codes for telemedicine, with the objective of enhancing services in particular for rural and underserved communities. Several vendor organizations introduced virtual technology that could facilitate such direct-to-patient visits, and a number of physicians began to offer the service. The outcome was an un-anticipated 735% increase in cost, outstripping budget expectations; the Minister subsequently asked for a review of the program.\(^\text{11}\)

Even at the provincial level, leveraging technology for virtual care requires careful consideration of how providers and patients will react to new means of delivering care and if incentives (in this example, the telemedicine codes) will lead to the desired outcome.

\(^\text{11}\) http://www.vancouversun.com/health/Health+minister+orders+review+telemedicine+program/9930071/story.html
Case Study:

A Rosie Experience on the northern coast of Labrador

A proven example of effective virtual care implemented in rural/remote areas involves Rosie, an RP-7 remote presence robot. Rosie was introduced to the isolated community of Nain on the northern coast of Labrador in 2010. Controlled wirelessly through a laptop computer, Rosie is FDA-approved to facilitate active patient monitoring in situations where immediate clinical action may be required but the physician is not physically present. One of the earliest applications of the robot has been in critical care where there is a chronic shortage of intensivists and other highly skilled providers in this region.

Rosie facilitated care delivery by physicians located in Happy Valley-Goose Bay, eliminating not only the need for a 350 km trip but also making it almost like being in the same room with a physician (there are no physicians locally in Nain). Physicians could remotely control Rosie, moving the robot around the hospital and into individual rooms to see and interact with their patients. The robot also enabled such tasks as reading ultrasounds and double checking prescriptions.

For clinicians (physicians and nurses alike) there was a high degree of satisfaction using the robot. Physicians reported being comfortable using the technology after just an hour of training. Physicians and nurses alike indicated that the capabilities of the RP-7 were superior to conventional videoconference-based telehealth. In addition, both physicians and nurses strongly expressed a high degree of comfort and satisfaction and reduced stress in using the robot for real-time clinical decisions; both also felt it greatly improved their professional collaboration in caring for patients. In terms of cost, expensive medical evacuations were reduced by 60%, not only saving dollars, but also improving significantly on the wait time to be examined, diagnosed and treated.

Further enhancements in telecommunications technology, along with the ongoing evolution of Rosie as well as other remote-presence based technologies can help many of Canada's rural and remote communities address acute shortages of clinical expertise. Rosie-like experiences are providing accumulating evidence of the benefits of such technologies for a growing array of clinical applications that facilitate direct care delivery as well as mentoring and education for providers as well as patients.

With the continued evolution of healthcare services across Canada, there is an accompanying demand not only for well-trained providers but also well-trained technical staff. This includes designers, developers and implementers who possess a deep understanding of currently available as well as approaching technology-based options and solutions that can enable the provision of virtual care. A particularly critical area of knowledge involves the understanding of the needs of providers as end users, including a thorough appreciation of the social and cultural issues that affect the use of virtual technologies in patient care delivery.

While the benefits of virtual care in achieving better patient outcomes are widely recognized, the integration of virtual care into common, daily clinical practice remains limited. The reality is that it is often the lack of human resources, rather than the virtual care technology, that represents the largest constraint to wider adoption. There are a number of university and college programs now in place across Canada that support health and medical informatics training in general. Depending on the particular program, they may include some course work and examples dealing with virtual care in the form of telehealth. Two dedicated certificate/degree programs deal specifically with virtual care: the telehealth nursing certificate program at the Université de Moncton and the TM LHIN Nurse Program from Ontario Telemedicine Network.

This lack of formal education is a challenge that could be overcome by developing dedicated virtual care training programs across Canada. Such programs could be based on the development of national-level curricula, supported by defined competencies and an overall ‘body of knowledge’ to formulate virtual care education and training programs. This would release some of the pressure on healthcare delivery organizations, as well as vendors, to develop their own in-house courses. Starting with continuing education programs that could offer certificates, and potentially moving on to diploma and degree programs as extensions of existing health informatics programs that currently exist, Canada could address the growing human resource needs for virtual care professionals. Over time, it is fair to expect that virtual care will continue to become easier to use; concomitantly, training in the use of technology will become more incorporated as part of basic healthcare provider education.

In the meantime, the ready availability of trained human resources remains an important issue. Providers and patients alike need reliable technical support so that the virtual care experience is at least as seamless, if not of higher quality, lower cost and greater convenience, as the traditional in-person interaction. For now, this availability can be effectively and efficiently provided through ‘in-house’ training with respect to both the technology as well as the virtual care. An example of such training follows in the context of providing telehealth services to Cree communities in Quebec.
Case Study: The James Bay experience

The Cree Board of Health and Social Services of James Bay provides an example of how a team may be effectively trained. A program has been developed so as to cover all the important components of virtual care including confidentiality of personal health information, use of technology and the structure of workflows and communications etc. Through the program's modular design, the training can be configured depending on the role of the team member. For example, technical staff receive more in-depth training on technology while physicians and nurses receive more comprehensive training on workflows.

Present in each healthcare facility, these technical staff are from the local Cree community and serve as the virtual care champions, supporting the providers in the implementation of new services into their daily practice (including the provision of direct technical support when necessary) and promoting the use of virtual care with their fellow community members. The staff is also the link between the local provider teams of nurses and physicians and the Board, maintaining a constant communication between the staff and the strategic planners.

The feedback so far has been very positive: providers feel more comfortable using the technology, thanks in part to the basic training received but also because they know they can rely on their technical colleagues in case of any problems. As for the community members, the community-based technical staff similarly put them at ease by being from the community and available to spend time explaining virtual care and how it works in their own language.

“Virtual care is one of the only means for our Cree communities to have access to specialized services ... it allows Cree to remain on their land, in their communities with their families, decreasing the stress and the lack of support endured during a long travel in an unknown urban centre,” Greta Visitor, Interim AED Miyupimaatisiun for the Cree Board of Health and Social Services of James Bay.

Providers feel more comfortable using the technology, thanks in part to the basic training received but also because they know they can rely on their technical colleagues in case of any problems.
Summary

These are the proceedings of a working group dialogue, and contribute to the ongoing discussion as work continues in virtual care delivery in Canada. The real-world examples cited in this paper demonstrate both the challenges to be faced and the possibilities becoming available as a result of the evolution of healthcare in Canada and of virtual care implementation in particular.

What can we take away?

First steps should include careful consideration and a collaborative approach to planning; even the most advanced virtual care solution needs an implementation plan if it is going to work. From Health Science North we learned that a culture of change must be fully embedded in an organization's strategic plan and supported with ongoing information sharing and planned oversight. Vancouver's Oak Tree Clinic offered proof of the value of post-implementation performance and system evaluation. From Scotland we saw the importance of measuring readiness before implementing a new virtual care system, and that a process framework or toolkit can vastly improve readiness assessment results.
Challenges such as workflow change and resistance to new technology face many organizations implementing virtual care. The solution may lie in incremental everyday culture change, as Dr. Tia Pham learned when she influenced a culture shift at South East Toronto Family Health Team by devoting two hours a day to virtual care. Acknowledging and overcoming user discomfort with new technologies is crucial to effective virtual care implementation.

Part of the success of Rosie, the Labrador remote presence robot, can be attributed to the fact that physicians reported being comfortable using the technology after just one hour of training. Incorporating effective training of human resources into an implementation strategic plan can turn new users into virtual care champions like those at The Cree Board of Health and Social Services of James Bay.

Collaboration and knowledge-sharing are crucial to the continued implementation of effective virtual care in Canada. The generosity of organizations that share the results of new technology implementations is tremendous; their experiences are valuable to healthcare providers starting out on their own virtual care journeys.

Experimentation produces examples we can share, and the conversation around implementation of virtual care should continue. Identifying key common areas and shared challenges like those outlined here lays the foundation that we can build on as we move forward with new evidence and lessons learned.

The generosity of organizations that share the results of new technology implementations is tremendous; their experiences are valuable to healthcare providers starting out on their own virtual care journeys.
Sources

5. Canada Health Infoway, Connecting Patients with Providers: A Pan-Canadian Study on Remote Patient Monitoring (June 2014).

Digital Health Canada connects, inspires, and educates the digital health professionals creating the future of health in Canada. Our members are a diverse community of accomplished, influential professionals working to make a difference in advancing healthcare through information technology. Digital Health Canada fosters network growth and connection; brings together ideas from multiple segments for incubation and advocacy; supports members through professional development at the individual and organizational level; and advocates for the Canadian digital health industry.

National Office Mailing Address:
1100 - 151 Yonge Street
Toronto, Ontario, Canada M5C 2W7
Phone: 647.775.8555 Toll free: 1.888.253.8554
Email: info@digitalhealthcanada.com
Website: digitalhealthcanada.com

OTN brings virtual care innovation to the healthcare system so that the people of Ontario can get the care they need when and where they need it most: at home, in their community or in hospital. For more than a decade, OTN has increased access to health care and education across the province with one of the world's most extensive telemedicine networks. Working with its many partners and leveraging its unique knowledge of health care and digital technology, OTN addresses challenges by introducing and spreading new ways of delivering care that benefit patients, care providers and the healthcare system. An independent, not-for-profit organization, OTN is funded by the Government of Ontario.